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Abstract

For a multivariable g-series called Jackson integral associated with irreducible reduced
root systems, a sufficient condition for convergence of it with respect to parameters is
given. Its asymptotic behavior as a function of its parameters is studied. For its application,
we give another proof of G,-type summation formula investigated by Gustafson in an
appendix.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

In the previous paper [8], we defined the Jackson integral associated with
irreducible reduced root system. It is a natural multivariable extension of both the
Ramanujan’s 1, sum

(@), _(a2), (@), (b/a), (9/az),
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and Bailey’s very-well-poised ¢4 sum

i (1 —ag™)(b),(c),(d),(e), (aq>
=, (1—a)(aq/b),(aq/c),(aq/d),(aq/e), \bcde
_ (9/a),(aq) . (aq/bc) . (ag/bd) , (aq/be),,
(a/b) . (a/c) . (a/d)..(q]e) . (aq/b)
(aq/cd) , (ag/ce) ., (aq/de) . (q) .
(aq/c)..(aq/d) , (aq/e) . (a*q/bcde)

Gustafson [4] established multidimensional g-series generalization of Bailey’s ¢/
summation formula corresponding to simple Lie algebras. On the other hand,
Aomoto [1] extended ¢-Selberg integral to a sum (g-series) which has a symmetry of
Weyl group of irreducible reduced root system. Gustafson’s sums and Aomoto’s
sums are very similar. Indeed, By using Gustafson’s C,-type sum, van Diejen [11]
proved a summation formula for his BC,-type sum, which includes Aomoto’s B, and
C,-type sums as special cases. One of motivations of considering our Jackson
integrals, which include most of their sums, is to treat their summation formulas
together. Their multivariable g-series can be expressed as a product of g-gamma
function and a Jacobi elliptic theta function. We discussed in [8] when the Jackson
integral can be expressed as a product of the theta functions. See Proposition 1
including a summation formula for Fy-type [9] which seems to be new. See also
Theorem A.3.

But first of all, in order to carry out the program outlined above, the Jackson
integral under consideration should converge. Since it is an infinite sum over a
lattice, we fail to define it if it diverges. We give a sufficient condition for its
convergence with respect to parameters. See Theorem 4 in Section 3. This is one of
the main results of this paper. It also assures the convergence of a g-series, which we
call the Macdonald type sum in this paper, essentially introduced by Macdonald [10],
who showed the relation between Aomoto’s sum and the g-Macdonald—Morris
identity investigated by Cherednik [2] and many others. Technically speaking,
as we shall see in Appendix later, for evaluation of Jackson integral, our method
needs repeated use of its difference equation with respect to parameters
and its asymptotic behavior. In this process, however, it is important to keep
the parameters within the convergence region of Jackson integral when we take
parameters away to infinity, even if the sum is well-defined in the region. We
have to choose a good direction of parameter shift. We show its asymptotic
formula (see Theorem 6 in Section 4), which is another main result of this paper. This
formula is interesting by itself. See also Proposition 5. As an example of its
applications, we give another proof of Gustafson’s G,-type summation formula in
Appendix.

Throughout this paper, we assume 0<¢< 1 and use notation (a) , = [[2, (1 — aq’)

and (@), = (a) . /(aq") .-
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2. Definition of Jackson integral

Let R be an irreducible reduced root system, spanning a real vector space E of
dimension #, and let {-,-> be a positive definite scalar product on E invariant under
the Weyl group W of R. We denote by R* the set of positive roots relative to a fixed
basis {a, ...,o,} of R. For each aeR, let ¥ = 20/<a, o). Let P be the coweight
lattice {ye E; {a,y > eZ for any ae R} and let Q be the coroot lattice of R defined
by Q = Zo) + --- +Za, = P. Let L be any sublattice of P of rank n. We assume L is
W -stable, i.e., L = wL for we W. The scalar product {-,-> is uniquely extended
linearly to Ec = EQrC~C". For xe Ec, we define

@r(by, ..., bs,c1y ..y x) =Dr({b;}, {cj};x)

71_[ H q <O(‘C>( 7b[+<oc,x>)w
et (qb+<“’x>>oo
o:short
l c,+<o¢r>)
—cj){a, x) 4~ Jo
X H H q / (qL/+<1 ‘€>) Y (1)
j=1 a>0
o:long

where s,/€Z-¢, bi,c;jeC and a>0 means aeR". If all roots aeR have the
same length, we regard the roots as all short. We denote by Ag(x) the Weyl
denominator as

Ar(x) = [T (@2 — 229, .

>0

Let U,(x) be a function defined by

H H q2b —1)<ax) 0( b+<%¥>)
et 9(ql b,+<zx ‘c>)
—wla>0
ozshort
(g <*)
> 2(,71 )X -
H oc1:[() 9((]1 c,+<o¢,,x>)
—wla>0
o:long
where 0(¢) = (&), (¢/&),,. The function 6(&) has the quasi-periodicity
0(q¢) = —0(5)/¢. (3)
This gives the following formula which shall be used in Section 4:
a(qNg) — (_I)NéqufN(Nfl)/ZH(g). (4)

From (3), we see the function U,,(x) is a pseudo-constant, i.e., an invariant under the
shift x—»x + y for yeP.
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For we W, we define wF(x) = F(w~'x) for a function F(x) of xeEc. The
function ®x({b;}, {c;}; x) is quasi W-symmetric with respect to W:

wOr({bi},{¢;};x) = Uy(x)Pr({bi}, {cj}; x)  for we W. (5)
The Weyl denominator Ag(x) changes by the action of W as
wAR(x) = sgnw Ag(x). (6)

For ze E¢, we now define the Jackson integral associated with R as

Jr({bi}y A} Liz) =Y Or({bi}, {¢}iz + 0)Ar(z + 2)- (7)

yeL

By definition, the Jackson integral Jr({b;},{c;}; L;z) is obviously invariant under
the shift z—z 4 y for yeL:

Jr({bi} i} Lz + 7) = Jr({bi}, {ci}; Ls 2). (8)

For the subsequent sections, we state some facts about the Jackson integral
Jr({b:i},{c;}; L; z) (see [1,7,8,10] for the detail). Let ®@r({b;},{c;};z) be a function
defined by

Or({bi}, 0):2)
( i ><°‘ 2 ggx2) r gl 2 TR ) gy

q
H b,' 4 l . z
250 0(qh+ =) 250 [T= 0(got<*=)
o:short o:long

The following propositions hold for L = P or Q:

Proposition 1. For L = P or Q, the sum Jr({b;},{c;}; L;z) is expressed as
Jr({bi} {¢}; Liz) = Cr({bi}, {¢i}; L)Or({bi}, {¢;}; 2), ©)

where Cr({b;},{c;}; L) is a constant not depending on z€ Ec, if and only if
s=1 for A,, D,, Es, E7 and Es-type,

(s,0) = (1,1) or 2n—1,0) for B,-type,

(s,0) = (1,1) or (0,5Y) for C,-type if n is odd,
(s,0) = (1,1) or (4,0) for Gx-type,

(s,0) = (1,1) or (3,0) for Fa-type.

Proposition 2. Assume that (s,l) satisfies the condition in Proposition 1. Then the
following relation holds for L = P or Q:

Jr({bi}, {ci}; P 2) = [P/ QIr({bi}, {¢j}; Q5 2)
In particular,

Cr({bi} {¢}; P) = [P/ QICr({bi}, {¢}; O),
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where |P/Q| is the order of the fundamental group P/Q of R, so that

R |4, | B,.C,.,E, | D, | E | Gy, Fy, E
p/of | owvr I 2 | 4 ! |

Proposition 3. If s =1 or (s,/) = (1,1), the constant Cr(by,c1; Q) is expressed as
RV et MU et P
CR(bhclaQ) - J:[O (([17<p""“v>)@(([7<pk’av>)CC

a:short
H 1 {protY >— cl)oc(q6f<pk7av>+cl)v
>< v V"
6 1 P >)w(q_<pka“ >)%
o:long
where 2p;, = b1 Y 40 0+ 1 Y. us0 and 5, = 1if {pi, 0¥ > = by or ¢, and 6, =0
o:short o:long

otherwise.

3. Convergence of Jackson integral

Let {yl, ..+, xn) be the set of the fundamental coweights, i.e., {a;, ;> = J; for all
i,j =1, ...,n, where d; is the Kronecker delta.

Theorem 4. The sum Jr({b:},{c;}; L;z) converges if b; and c; satisfy

1—=s
R
e<2

fork=1,....n

I
i> > La, /k>+< +Z C/) > Lomey [ <0

>0 j=1 >0
o:short o:long

Proof. For simplicity we abbreviate ®z({b;},{c;}; x) to ®r(x). We denote by D the
set of dominant coweights defined by

D= {yeP;{a,y>=0fori=1,..,n} (10)

Then we have Lc P =J,,., wD. This implies that

(b} {e}: Liz)[ < Y [@r(z + 0)Ar(z + 7))
LEP

< >0 Y Oz + ARG+ 7). (11)

weW yewD
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By using the quasi- W-symmetry (5) of ®x(x), it follows that

> |Or(z+ ) ARz + 7)]

yewD

= 3 @&z +w ARG +w )]
1€D

= Z [WOr(wz + g)wAr(wz + %)
reD

< |Uy(wz)] Z |®r(wz + y)Ar(Wz + %) (12)
7€D

From (11), (12), it is sufficient to establish that

Z |®r(z + 2)Ar(z + 1) (13)
1D

converges. By definitions (1) and (2), we have

s—1

s 1—1 !
q)R(x)AR(x) = q( 2 7Zi:1 b') Z7:shorl>0<1’x>+(772j:l (v/) 21:10“g>0<oc,x>

1 b+<ac\>

1 c+<eu>
XU H b+<x>c> H H 3'3

c,+<oc,\>
>0

o:long

o short

% H {onx)

(14)
>0

When yeD, from the explicit expression (14) of ®g(x)Ag(x), it follows that the
factor

s 1 b+<au+> / 1 ci+<az4y>
_(q ! " ! )oc {ozyy
H H (qb+<oc7+x> H H c,+<m:+x>) H (q T 1>
i=l a>0 >0 0 a>0
o:long

a:short

in |®r(z + y)Ar(z + x)| is bounded. Hence it is sufficient to establish the convergence
of the following part in (13):

Z |q z 1 ")thm»o<“’X>+(%7Zi:1 C/)Za:lol1g>o<“’z>|

1ED

ﬁ (6] (YE 1 _Z::l b’) Eu:shorl>0 Congye >+ (I_TI_Z::l Cf) Zu:long>0 Sy ? ) "

v,
_ zoc: . <qRe<(x212;1 h’) Z'x'shorl>0 <“’Zk>+(%fz;:1 ('/)Zaulonpo <[x’z’<>)) '

(15)
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If the condition

s—1
2

is satisfied, then (15) converges. This completes the proof. [

s i
zbf) Y >( zc]) S g |20
i=1

>0 j=1 a>0
o:short o:long
3.1. Examples

Throughout this section, let {¢,...,¢,} be the standard basis of R” satisfying
<8i,£j> = 5,] for all l,] = 1, o n

3.1.1. B,-type
Basis: o) =& — &, ) =& — €3, ..., Oy_] = Eu_| — &n, Oy = &,
° Fundamental coweights : y; = ¢, 1o =& + &, 13 =& + & + &3,

s dp =&t e tezt e

{Positive short roots : ¢ (1<i<n),

° ..
Positive long roots : g;+¢; (1<i<j<n).
{Highest root : & + & = oy + 20 + 203 + --- + 20,  (for Lemmas 9, 10),
° ) .
Highest root in short roots: & = o) + oy + -+ + 4.

The sums of the positive short roots and the positive long roots are the following:

n

E oc:i &, E 05_25 i)e;,
>0 i=1 >0

o:short a:long

so that we have

S Koy =k > Loy =k@n—1-k).
>0 >0
o:short o:long
By Theorem 4, if (s,/) = (1, 1), a sufficient condition for convergence is
Re(b; + (n—1)c;)<0 and Re(b; +2(n—1)¢;) <0,
as we see from [7]. And if (s,/) = (2n — 1,0), we have
Re(by + -+ + b2y1) <O,

which was mentioned in [6].
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3.1.2. Gr-type
Basis: oy = &1 — &, o0 = —2¢1 + & + &3,
°
Fundamental coweights : y; = 20 + a2, x, = (301 + 2002)/3.
Positive short roots : oy, o + o, 201 + oo,
°
Positive long roots : oy, 30y + o, 301 + 205.

Highest root : 30; + 20, (for Lemmas 9, 10),
Highest root in short roots : 2u; + 5.

The sums of the positive short roots and the positive long roots are the following:

Z o= 4oy + 20 Z o= 60 + 4oy,

>0 >0
o:short o:long

so that we have

Do Kw> =4 > K> =2 > Luu>=6 Y L(nn)=4

>0 >0 >0 >0
o:short o:short o:long o:long

By Theorem 4, if (s,/) = (1, 1), we have a convergence condition as
Re(2by +3¢1)<0 and Re(b; +2¢1)<0,
as we see in [7]. And if (s,/) = (4,0), we have
Re(2(by + by + by + by) — 1) <0, (16)

which was mentioned in [5].

3.1.3. Fy-type
Since the root systems F4 and F,” are isomorphic with orthogonal transformation
[3, p. 806], we take a basis of F,” instead of that of Fj.

Basis : o] = & — &3, Oy = &3 — &4, 03 :2847 Oy =& — & — &3 — &4,
° Fundamental coweights : y; = & + &, x, =261 + & + &3,
1= (Ber +extes+ea)/2, qq=ce1
Positive short roots : &;+¢ (1<i<j<4),
Positive long roots : 2¢; (1<i<4), ¢ +erte3tes.

Highest root : 2¢; = 20y + 4oy + 303 + 204 (for Lemmas 9, 10),
Highest root in short roots : & + & = 20 + 30 + 203 + 04.
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The sums of the positive short roots and the positive long roots are the following:

Z o = 6 + 4ey + 2e3, Z o = 10&; + 2ep + 2¢e3 + 2é4,

>0 >0
o:short o:long

so that, we have

Yo Koy =10, > (o> =18, Y Loy =12,

>0 >0 >0
o:short o:short o:short
E <OfaX4> :61 E <(Z,X1> :127 E <OC7X2> :247
>0 >0 >0
o:short o:long o:long
E <OC7X3>:]8) E <OC7X4>:]0'
>0 a>0
o:long o:long

From Theorem 4, if (s,/) = (1, 1), we have a convergence condition as
Re(5hy + 6¢1)<0 and Re(3b; + 5¢1)<0.
And if (s,/) = (3,0), we have
Re(6(by + by + b3) — 1)< 0, which will be used in Theorem A.3. (17)

4. Asymptotic behavior

Following [10], define a sum Mg({b;},{c;}; L;z) over a lattice L as
MR({bl}a{c/}’LaZ) :Z lPR({bl}a{C/}aZ+X)7 (18)
yeL

where

s bt o ! I—¢j+<ax)

[T (¢ ), p Him (@797,

lPR({bi}’{cj};x) = H 1( 1+<1.x>) = H ’ ( 1+<oc.x>) =
aeR 4q : o0 aeR q ' o0
o:short o:long

We call Mgr({bi},{c;};L;z) the Macdonald type sum. If (s,I) is in the list of
Proposition 1, for L = P or Q, we easily see that the sum Mgr({b;},{c;};L;z) does
not depend on ze€ E¢ and coincides with the constant Cr({b;},{c;}; L):

Mr({bit ¢} Liz) = J(f)%zi}{c{]i,}Lz?

From (19) and Proposition 2, obviously we have

Mr({bi},{cj}; P;z) = |P/QIMr({bi}, {c;}; Q5 2). (20)

= Cr({bi}, {¢}; L). (19)
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We also define a sum Mg(L;z) over a lattice L as

1
Mr(L;z) =) (H W)

Z1EL \ax€eR

which does not depend on ze Ec if L = P or Q.

Proposition 5. The following relations hold for L = P or Q:
Mg(P;z) = |P/Q|MR(Q;z) and Mg(Q;z) = (q)",.

Proof. See (57). O

We assume (s, /) satisfies the condition in Proposition 1 under here. By Theorem 4,
the Macdonald type sum Mg({b;}, {¢;}; L; z) still has its meaning when b; and ¢; are
sufficiently negative.

Theorem 6. The Macdonald type sum Mp({b; — N},{c; — N};L;z) at N> + oo is
the following:
G Me({bi = N} {g = N} 032) = (9)7
lim ~ Mr({bi = N},{¢; = N}; P;z) = |P/Ql(q)",-

N->+x

The following follows from Theorem 6 immediately:
Corollary 7. The asymptotic behavior of the Jackson integral Jr({b; — N},
{¢; = N};L;z) at N— + o is following:
Jr({bi = N}, {¢; = N}; 0;2)

~(_1)(5R1+1R2)N (SR{HR)N(N+1) /2= (by+-+-+bs) RuN—(c1+ -+ +¢5) RoN

q
x (9)5 Or({bi}, {¢j}:2),
JR<{b,‘ — N},{Cj — N};P;Z)

~(— 1)(SRl+1R2)Nq(sR1+1R3)N(N+1)/2—(b1+---+bs)R1N—(cl+---+cj)RzN

< [P/Ql(q)%, Or({bi}. {¢}; 2),

where Ry and R, are the number of all short and long positive roots respectively.

Before proving Theorem 6, we establish four lemmas.
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Lemma 8. Let Dy be the set defined by

Dy — {{XEP;|<O€,X>|<Nfor all oe R} if 1#0, o
N {xeP;|<{o, 1> |<N for all short aeR} if 1=0.
Then,
NEIEQG Z \PR({bi_N}v{cj_N};Z'i‘X) = Mg(P;z).

XEDJV

Proof. We denote by F(y;N) and G(y) the numerator and denominator
of Wr({bi — N},{c; — N};z +y), respectively, i.e.,

F(x;N)
Yr({bi — N}, {¢;— N}; -
R({ i }’{Cl }7Z+X) G(X) )
where
K /
F(X§N) = H H (ql—b,v+N+<oc,z+z>)oo H H (ql—c,-%—N#—(oc,z#—;O)O07
xeR i=1 xeR j=1
o:short o:long
G(x) =[] (@), (22)

aeR

We assume ¢ is an arbitrary positive number. If yeDy, the factor F(y; N) is
bounded, so that

[F(: N)[<Cr, (23)
where C) is a constant not depending on y and N. The factor G(y) is written as
GG = [T (@) (=) =TT 0¢*#) /(1 = ¢<*=+2). (24)

>0 >0
Using the quasi-periodicity (4) of the function 6(&), we have
0(q*=?)
0(q<zx.z+x>)
From (24) and (29), it follows that
G(;{)*l — H (_1)<a-,x> 6]% <%Z>2+(<1«,Z>*%)<%X> (1— q<a.z+x>)/0(q<%z>). (26)

>0

= (= 1)< g a0 D)) (25)

By using the Weyl denominator formula for (26), we have

-1 1 ,Z+y —l Z+ 1 Ly )2 o,z s 1 o,z o,z
G| = H (q2<fx, +1> —q 5<a, +1>)q2<v,x> +<a ><%,z>q2<%, >/9(q< ; >)

>0

1
(Z Sgan<wp,z+x>> qZM G DR CEITER D

weW

< (G

1 2
<G 3 g O 42 >+ > (27)
we W
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1 z . .
where p =13 _joand Gy =[], o 277 /0(g¢**?)|. Since the quadratic part

72<ay>

>0

in (27) is positive definite for y e P, there exists a positive integer m; such that

> |q21>0%<1,x>2+21>0 (02> o)+ Cptr) | <q%1 S (>’
weW

for y¢{yeP;|<o,x>|<m for all i=1,...,n}. Since the sum
3 a0’
JEP

converges, there exists a positive integer m; such that

1
N e <
P 3G, Gy

where M, = {yeP;|<{o;,x>|<my for all i=1,...,n}. We set
M = {yeP;| oy, x| <max{m,my} for all i =1, ... n},
which does not depend on N. Then, by (27)-(29), we have

> 160 <54

yeP-M

From (23) and (30), it follows that
Yo FGNGH <G Y G <e/3.

XGDNfM XEDN*M
For ye M, there exists Ny such that

P60 =600 <55

for all N> Ny. Hence, from (30)—(32), we obtain

Y FuN)Gx ™ =Y G

1€DN reP
<D FGNGH) ™ =601+ > IFNGH) ™
LEM 1€DN—M
+ Y G Y<e O
reP-M

(28)

(30)

(31)

We still use notation in the proof of Lemma 8. Let D be the set of dominant

coweights defined by (10).
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Lemma 9. Let 6 be the positive root defined by
. {the highest root if 1#0,
| the highest root in short roots if 1 =0

(See Examples in Section 3.) For a sufficiently large positive integer N and ye D — Dy,
there exists a constant C >0 not depending on N and y such that

N N~
Wr({bi — N}, {c; — N};z 4 )| < Cqa<**.

Proof. For yeD — Dy, we divide R into two sets as follows:
+_ 4t Rt
R* =47 UB], (33)

where 47 = {ae R";0< o, 7) <N} and B} = {ae R"; N < {a, 1) }. By definitions
(10) and (21), D — Dy is described as

D—Dy={yeD;N<<d,z>}. (34)
From (34), it is obvious that

geB; if yeD — Dy. (35)
From (22) and (33), it follows that

F(1;N)
!
H H 1- b,-+N+<ocﬁz+,(> H H 1- C/+N+<O(,Z+X>)
>0 i=1 a>0 j=1 ”
o:short o:long
K /
H H (qlfb,+N7<o<,z+x>)w H H (ql—C/+N—<oc.z+x>)oo
aed i=l aed; Jj=1
1sh0rt long
K !
H H (qlfb;+N7<aVZ+x>)oc H H (qlfc/+N7<oc,z+x>)w. (36)
weBf i=1 aeB; j=1
1sh0rt along

The last factor appearing in (36) is equal to the following:

/
H H 1-bi+N— <a"+x> H H 1- cj+N—<x,z+x>)
0
weB; =l aeB} j=1
o 5h0rt o long

bz oz )+ gy — N <a.z>+<a.y>—N)

s /
0(q"
H H b+<oc7>+<oc,(> N H H (ch+<9u>+<,<,/> N)
weB} i=1 ao neB) Jj=1 0
ashort xlong
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- 1I H 1)< 4 $(Cor> =N = (bt (2> D) (<> —N)

cce).’?Jr i=1
ashort
!
< 1T I (- 1)<“’>q_ (<o1> =N =(+ <> —3) (<o > —N)
ueBf j=1
a:long
G(qb+<au>) ! L,+<x.z>)
X H H b+<o< >+ o> — N) H H C,+<a7>+<a/> N) . (37)
xeBy =l * aeB; ]:1 ©
o:short long

From (36) and (37), since the factors

H H 1b+N+<oc,h+X> OO H ﬁ ICJ+N+<°‘7Z+X>)OC7

>0 i=l1 >0 j=I1
o:short o:long
/

1-bi+N—oz4y) I1—¢j+N—<az+y)
I1 11« Jo 1T 116" o
wed) =1 aed; Jj=1
ocshort o:long

and

g(qb+<ac >) / (J+<a.z>)
H H b+<v7>+<%x> N) H H (+<cu>+<a/> N)
fxeBzr i=1 ,{GB+ Jj=1 e
o:short aclong

appearing in F(y; N) are bounded for ye D — Dy, there exists a constant C3 not
depending on y and N such that

IF(z;N)|< Cs H ﬂ q*%(<“‘l>*N)Z*(bi+<“‘z>*%)(<“=Z>*N)

aeB! =1
xshort

N VNS SN O
« H H q (o) =N) = (gj+<oz) =) (<o) =N) | (38)

oe B;r Jj=1
o:long

For G(x) ™", the factor (1 — ¢<*=t%>)/0(¢¢**>) in (26) is bounded if y € D. Then there
exists a constant C4 not depending on y such that

1 2 1
|G(x)71|<C4 H q§<w> F(az> =)<y | (39)

>0
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Since (s,/) satisfies the condition in Proposition 1, for i,j =1, ..., n, we have

(s=1) Y Cagy <oy +U=1) Y o> <o z;> =0. (40)
>0 >0
o:short o:long

(See [8, p. 336], (s,/) in Proposition 1 was chosen to satisfy (40).) This implies that

11 B’ = 11 ASI2% 11 q§<a,z>2 (41)

>0 >0 >0
a:short o:long
and
[T 420 = I ¢ ] ¢ 0. (42)
>0 >0 >0
o:short o:long

By virtue of the convergence condition in Theorem 4, we obtain

11 g0 | < 1 o420 ] gt e < | 43)
>0 >0 >0
o:short o:long

From (39), (41)—(43), it follows that

G(x) "1/ Cy

< H q%@c.)(>2+(b|+~--+bA—%+s<oc,z>)<fx,x> H qé<ou,x>2+(c|+~..+c,—%+l<a,:>)<fx,x>

>0 >0
o:short a:long

_ H q%<a,z>2+<bl+--~+bx—§+s<x7z>)<a,x> H qé<w>2+<cl+-~-+cz—§+i<a,z>)<a.,x>
o«.eAzr oteA;r
o:short o:long
% H q§<a,x>2+(b1+-~+bﬁ§+s<a,z>><a,z>

oe B;r
o:short

« H qé<oc,x>2+(c1+~--+017%+l<a,:>)<a,x> ) (44)

xeB}
o:long
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If %0 and / = 0, then it follows that

H q%<%x>2+(b1+...+b.‘—%+s<c<,:>)<a,x> H qé<a,x>2+(cl+...+c/—%+l<o<,2>)<w>

aed; uedy
a:short a:long
- H < AR b =g (ai2)) ()
wed;)
a:short
s 1 s 2 1 s 2
_ H qi(<ot,z>+;Re(b|+-~+b;7§+s<1,z>)) —a5(Re(bi+++bs—5+s{a,z)))
ued;
o:short
<1 q—%<ke<b1+~~~+hs—§+s<a; )
aedS
o:short
L by =S5z D))
< H q72s(RC(bl+ +by 2+5<zx,4>)) ) (45)
>0
o:short
In the same way as (45), if s = 0 and /#0, then
y )
H q%<aﬁx>2+<bl+~--+b.‘—%+s<a,z>)<a,x> H q§<m>2+(cl+~--+c,—§+l<a,z>><a,x>
aed; aedS
a:short a:long
1 i 2
< H q*ﬁ(RC(Gl+"'+C!*§+Z<(X,Z ) ) (46)
>0
o:long

Moreover, if s#0 and /#0, then

H q%<“=)(>2+(b'+"‘+b"_%+s<a’z XECHD H qé<“al>2+(c’l+“'+Cl—é+1<0(-,2>)<0¢‘l>

ved; aed;
o:short o:long
1 s 2 L Re(c . V)2
< H q*zs(Re(bl+--'+b.\72+5<ot,z>)) H q*zl(RC(Ll+"'+L[*2+/<O(.,..>)). (47)
a>0 >0
o:long

a:short



170 Masahiko Ito | Journal of Approximation Theory 124 (2003) 154—180

From (44)—(47), we have

1G(z) "< Cs 11 <0 bt b (a,z)) )
a€B;
o:short

< 1 q§<a,z>2+<c1+---+c/—§+l<«,z>)<m>

oEe B;
o:long

where Cs is a constant not depending on y and N such that

o:short
1 /
[Taso g 2Relert+agt ()’ if s =0, I#0,
C5/C4 — o:long
Taso ¢ 2S(Re(b1+ Ab—5+s<w.2)))
o:short
1 l
X [Ta>0 qiﬁ(Re(c‘+“'+C’7§+l<a‘z>)>2 if s#0, [#0.
o:long

From (38) and (48), it follows that »
Wr({bi = N} {c; = N}z + 0l = [F(N)G(x) |

< C5Cs H q%<%«,x>2+(b1+-~-+bx—%+s<a,z>)<a,l>

xeBf
o short

Xqf§<<a.,z>fN)2—(bl+-~-+b\,+s<a 2y =)o >—N)

< T1 qé<m>2+(cl+~--+c/f%+l<w )<

xeB}
o:long

w g DN ettt 2 ) (> N)

SN<:’X>+SN(<%2X>7N>+ (S<OZX>—%+b1+~--+b5+s<a,z>)N

o:short

INCoy IN( <w> N)

<0 .
xeB}
o:long

I,
<3X>7é+61+-~-+61+l<1,z>)N

[[amo g BROE=thSts) e g -,

(48)
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Let N be a large integer satisfying

SN s J
- — — Sl >
) 2+Re<s<oc,z> + ;:] b,> >0 and

IN 1 !
T—§+Re<l<a,z> +j; cy) =0,
for we R™. For o€ BY, if o are short and long, then we have

N2 N) | (SKLLD 51y oy )N

q <1

3

and

IN({o>=N) | (Iox> 1
2 *( 4 2

‘q +cl+...+cl+l<a¢,z>)N|<1

respectively. Therefore, from (49) and (35), we obtain

SN (o> IN o>

We({bi - N - Nyztpl<aes [[ g + [[d
xeB; veB;
w:short a:long

N5,
< G5Cs g4,
which completes the proof. [

Lemma 10. Let s be a non-negative integer. Let Hy be the set of dominant coweights
lying on the hyperplane defined by {d,y> =s+1,ie., Hy = {yeD; (&, > =s+ 1}.
Then

(5 D5 +2) (50— 1)

i< (n— 1)l

Proof. By definition, the highest root & can be written & = pjo; + -+ + pno, Where
pi, i=1,2,...,n, are non-zero positive integers. For y = vy, + -+ + v, €D, the
condition <{d&,y» =s+ 1 is equivalent to pv{ + --- + p,v, = s + 1. Therefore, we
have

#Hs = #{(Vl, --'avn)e(ZZO)n; Pivi+ o+ ppvp =5+ 1}

Since integers p; are all positive, we have

V1 ) €(Z20)"s pivit o 4 pave =5+ 1}
g#{(vla ‘--7vn)E(Z>0)n; Vit e+ =85+ 1} (50)
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Counting up the integer points (vy, ..., v,) €(Zso)" satisfying v; + --- +v, = s+ 1 by
induction on n, the RHS of (50) is equal to

(s+D(s+2)-(s+n—-1)
(n—1)! '

This completes the proof. [

Lemma 11. Let N be a sufficiently large integer. The following holds for N:

S Wallhi - Nh (g - Nz )=o) (Vo4 0

XEP*DN

Proof. Since P and Dy is W-stable, it follows that

P-Dy= ] w(D-Dy). (51)
we W

From (51), it follows that

Y Wr({bi =N} {g—Nyiz+7)

1€P—Dy

= > > ¥r({bi—N}{¢—-Nhz+y)

weW yew(D—Dy)

Z Z WYr({bi — N}, {c;—=N};wz+y).

weW yeD—Dy

Thus, it is sufficient to prove that

3 wR<{bi—N},{cj—N};z+x>=o((ﬂf) (N> + o0). (52)

1€D—Dy

From Lemma 9, it follows that

Z \PR({bi - N},{cj — N};Z+X)

1€D—Dy
N, 5.
< > R =N} {g—Nhz+)l<C Y gao. (53)
71€D—Dy 71€D—Dy

By definition (34), D — Dy is decomposed into H,’s as follows:

DDy =] Hyen.

m=0
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From Lemma 10, it follows that

o0 0

N Nos N m
S FOO =3 Y O 2 (gt
1€D—Dy m=0 yeHin m=0
- zw: (m+N+1)m+N+2)--(m+N+n—-1) N(m+4N+1>
N m=0 (l’l— 1)' K
_(NFD(N+2)(N+n—1) ¥+
- (n—1)! @t
so that
ﬂ<o~(h> N2 N”_]q%
> g IR 0 (N—> + o). (54)
1€D—Dy :

From (53) and (54) it follows (52), completing the proof of Lemma 11. [
We now prove Theorem 6.

Proof of Theorem 6. By using Lemma 11, we have
Mg({bi — N},{¢; = N}; P;z)
= Y Wr({bi— N} {c;— N}z +72)

1€DN

+ Y Wr({bi— N} {¢—N}hz+y)
. w{bl-—N},{cj—zv};z+x>+o(q]f) (Not o). (59)
1€Dy

From Lemma 8 and (55), we obtain

NEIEDO Mr({bi — N},{c; — N}; P;z) = Mr(P;z). (56)
In particular, when (s,/) = (1, 1) it follows that

Nl—i»rfoo Cr(by = N,c; — N;P) = Ngrfw Mg(by — N,c; — N; P;z) = Mg(P;z).
On the other hand, from Proposition 3, we have

Jlim  Cr(br = N,er = N; P) = [P/0l(9) -
Thus we have established

Mg(P;z) = [P/ 0|(q)", - (57)

By using (20), this argument is valid for Mr(Q;z) = (¢)", . The proof of Theorem 6 is
now complete. [
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Appendix A. Gustafson’s G,-type summation formula

We consider the sum Jg, (b1, b2, b3, bs; P;z) of the case (s,/) = (4,0) for Gy-type
root system. The aim of this section is to give another proof of the following theorem
established by Gustafson [5], as an application of Theorem 6:

Theorem A.1 (Gustafson). If g<|g? P02 the sum Jg, (b, by, b3, by; P;2)
converges and is expressed in the form (9). The constant Cg,(by,by,bs,bs; P) is
expressed as

(q)z (ql—b|—b7 b4 1—2}),' b
0 oc —b;—b;
(q‘ 2(b1+b2+b3+b4 H H (q ])co
i=1 I<i<j<4
T

I<i<j<k<4

The former part of Theorem A.1 was mentioned in (16). Before proving the theorem,
we give a lemma in the next section. By using notation in Examples, we write the sum
J6, (b1, b2, b3, ba; P; z) explicitly as

JG2(b1,b2,b3,b4;P; Z) = Z (Dgz(bl,bz,b3,b4;2 + X)AG2(2+X)7 (Al)
LEP
where
®Gv(bl7b27b37b4;x)

4
H ql —2b;) 201 +02,x )
i=1

(ql —bi+<a, x>) (qlfb;+<oz|+a2,x>) (qlfb;+<20c1+cc2,x>)
© © s}
( b+<o:1,x>)ao (qb;+<oc1+o<g.,x>)% (qb[+<20<1+<x2,x>)30

Ag,(x) = (q%<m,x> _ q%<a1,x>> <q%<xl+az7x> _ q%<a1+xz,x>)
1 1 1 " 1 -
> (q§<20(1+12‘x> _ q§<2a1+xz‘x>) (q§<0(2,~\> _ q§<a2,~\>>

« <q%<3oc1+a<g,x> B q%<3a1+ag,x>) (q%<3o<1+2:xz,x> B q%<3a1+2o¢2,x>>

(A.3)
and P =Zy, + Zy,.
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A.1. Recurrence relation of Jg, (b1, ba, b3, bs; P; z)

Lemma A.2. The recurrence relation of Jg, (b1, b2, b3, ba; P; z) is the following:
TG, (b1 + 1,b3,b3,b4; &) = 1, (b1, b2, b3, ba)J 6, (b, ba, b3, by; P; 2),
where
rG,(b1,b2,b3,b4)
= — (1= @)1= (1 — ghth)

b1+bz+b3)(l _ qb]+/72+b4)(1 _ b1+b3+h4)

x(1—¢q q

(1 _ quI)(l _ q2b1+l)(1 _ qb1+b2+b3+b4)
q3b1 (1 — qb] )(1 _ qZ(b|+b2+b3+b4))(l _ q2<b]+b2+b3+b4>+l)'

Proof. We set the half sum of the positive roots and the fundamental weights as

0= %Zoc = S0y + 300, #ny =201+ 02, #y =30 + 2on.

>0

We denote by w, the reflection defined by w,(x) = x — <a",x>a. The Weyl group
W is generated by w,, and w,,, which is isomorphic to the dihedral group of order
12. For a function f(x), we denote by .oZf(x) the alternating sum of f(x) with the
action of W, i.e.,

Af(x) = Z sgnw wf(x) = Z sgnw f(w™x).

weW weW

In particular, we use

o, (x) = {Qf(q@”) = Z sgn w q<”’i"x>.

weW
The Weyl denominator formula says that
o p(x) = Ag, (x). (A4)
From (A.2), it follows that

(I)Gz(bl + 1,b2,b3,b4;X)
@, (b1, b2, b3, bs; x)

= S3(x) = (" + ¢S (x) + (" + g7 Si(x) = (¢ +q7"),  (AS)

where

Si(x) = (q<m-x> + q7<a1~x>) + (q<a1+ocz-,x> +q7<m+az,x>)
+ (q<20¢1+1z,x> +q7<21|+a3,x>)

3
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SH(x) = (q<0<1ﬁX> + q—<a1,vv>)(q<2a1+xz,x> 4 q—<2%1+az7X>)

+ (q<°‘"x> _,_q—<a1-,X>)(q<u1+az,x> +q—<a1+%z~,x>)
+ (q<%1+f12~,x> +q—<051+0(z~,x>)(q<2541+“27x> +q—<2‘21+127x>)7

S3(x) = (q<0<1ﬁx> + q—<a1,v¥>)(q<%1+az7v¥> + q—<0<1+c<z¢>r>)
% (q<20<1+az,X> + q7<2a1+o<z,-r>).

Each S;(x) satisfies the following equations:

S1 (S (x) = iy, () = 1, (), (A.6)
S2 ()7 (x) = iy (¥) — 27, (), (A7)
Sy (X)L () = oy (X) = Sy () = L (X) + 27 (). (A8)
For simplicity we abbreviate @, (b1, b,, b3, bs; x) to Dg,(x). We define J,(z) by
)= z; DG, (2 + 1) pg (2 + 1) (A9)
e

By this definition and (A.4), it is obvious that Jy(z) = Jg, (b1, b2, b3, ba; P; z). From
(A.5)—(A.8), we get

JG, (b1 +1,by, b3, by; P; 2)
= (Jay, (2) = Ty (2) = T, (2) + 200(2)) = (¢ + ¢") (I, (2) — 2J0(2))

+ (" + g7 (T, (2) = Jo(2) = (@ + g7 (). (A.10)
For a function ¢(x), we define V,¢(x) as
g, (x +7)
: = - fi P.
Vip(x) = o(x) ) @(x+y) for ye
Then, we obtain
D @G, (z+ )V,(z+ 1) =0, (A.11)

LEP

because the sum ), , P, (z+ 4)@(z + A) defined over the lattice P is invariant
under the shift z—z + y for ye P. Equation (A.11) implies that

> @G, (z+ ) AV,p(z+ 7) =0. (A.12)
AEP

In particular, for the fundamental coweight y, € P, it follows that

®G2(x+ Xz) Aoy +batbabbe) 4 1 _ qb‘+<o<1+ocz x>)(1 _ qbf+<2o<1+ocz,x>>

(DGZ(X) 1 _ ql b,+<,<1+oc2,\c>)(1 _ ql—bi+<2u1+a2,x>)'

i=1
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Moreover, for V,,¢(x), we now take ¢(x) as

S

go(x) _ q<mla1+mvaz X > +2(bi1+by+b3+bs) H 7b,>+<a1+<xg,x>)(1 7b,>+<2<x1+cc2.x>)

-9

=

of the cases (m;,my) = (=5,—-4),(=3,-3) and (—3,—4). Then, after some direct
calculation of ./V,,¢(x) for ¢(x) above, by using (A.9) and (A.12), we obtain the
following three equations:

0= (1 + By)Jy, (2) — (B + By + B3)Jo(2), (A.13)

0=(1—gB3)Ja, (z) + [Bs — B — By + qB4(B3 + B — 1)]J,, (2)
+ [By+ BBy + B{B; — BBy — B3 B,
— q(B1 + By — B1Bs — ByBy — By By)]Jo(2), (A.14)

0= (B\Bs+ B} — 1 — B3)Js,, (2) + (Bi + By — ByBy — ByBy)J,,(2)

+ (Bl — BB, + B,B; — B3B4)J,1] (Z)

+ B2(B3+B4— 1 —Bl)Jo(Z), (AIS)
where B, is the jth elementary symmetric polynomial of ¢, ie., By =q¢" + ¢+
qbz + qb47 B, = qb1+b2 + qb1+b3 + qb1+b4 + qbz+b3 + qbz+b4 + qbz+b47 B; = qb1+bz+b3 +
qb1+bz+b4 =+ qb1+b3+b4 +qb2+b3+b4’ By = qb|+bz+b3+b4' By eliminating J2’7|(Z)7 an (Z) and

Jy, (z) from Egs. (A.10), (A.13)~(A.15), we eventually obtain the recurrence relation
in Lemma A.2. O

A.2. Application of Theorem 6

Proof of Theorem A.1. From (19), Lemma A.2 and the recurrence relation of
O, (b1, b2, b3, b4; P; 2)
O, (b1 + 1,b,b3,b4; P;z) = —q¢"" O, (b1, by, b, bu; P; 2), (A.16)
it follows that
Ca, (b1, b2, b3, by; P; 2)
_JG,(b1,ba, b3, by; P; 2)
O, (b1,b2, b3, by; P z)
(g )0y 1—bi—b; 1—bi—b—b
= I @ I @
-1 4 N 1<i<j<4 I<i<j<k<4
(q'Prbambambey o JR(by — N,by — N, by — N, by — N; P;z)
(ql—2(b1+b2+b3+b4))8N ®R(bl — N, bz — N, b3 — N, b4 — N; P; Z)

X
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4 1—2b,»
= H H (¢ ")y H (q" ") 5y
i=1 I<i<j<4 I1<i<j<k<4
(ql—bl—bz—b3—b4)
X N_ Mg, (by — N,by — N,b3s — N,by — N; P;2)

1=2(by +br+brtb
(q'2brtbatbatba)y o

(ql —by—by— 4
= (g 2rths by )“ H
—b;

‘%

< I @™, H (ql‘b"‘b/‘"’k)oo
I<i<j<4 I<i<j<k<4
x lim MGz(bl N,bz —N,b3 —N,b4—N;P;Z). (A17)

N->+w
Combining (A.17) and Theorem 6, we obtain Theorem A.1. O

Remark. For the constant Cg,(b;,by,b3;P) of the case (s,/)=(3,0) for
Fy-type root system, we have the following theorem to do the same process
as above:

Theorem A.3. If g<|g" >+ |9, the sum Jr, (b1, by, b3; P; z) converges and is expressed
in form (9). The constant Cr,(by, by, bs; P) is expressed as follows:

Cr,(b1,by,b3; P)

= (q) (¢ (g ") (g

X (ql—bl—Zbg) " (q17b172b3) o (qlszfzb] )

o0

X (q17b272b3) " (q17b372b1)00 (q17b372b2)00

% (qlfblszffu)QO (q17b17b272b3)w (qlfbl 72})27[73)00 (q172b17b27b3)oo

17[7172[7272[73) 1721717})272})3) 172})]72})27}73) (q172b|72b272b3)
o0

x (¢ (g (g

o0

—3b1—3b2—-3b 3 b; b;
(ql31323; 12 \(13)00

(q'—6b1=6b2—6b3) H (g")

i=1

X

Proof. The former part was mentioned in (17). For evaluation of the constant
CF4(b1,b2,b3;P), S€c [9] O
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